1,837 research outputs found

    Modelling Disorder: the Cases of Wetting and DNA Denaturation

    Get PDF
    We study the effect of the composition of the genetic sequence on the melting temperature of double stranded DNA, using some simple analytically solvable models proposed in the framework of the wetting problem. We review previous work on disordered versions of these models and solve them when there were not preexistent solutions. We check the solutions with Monte Carlo simulations and transfer matrix numerical calculations. We present numerical evidence that suggests that the logarithmic corrections to the critical temperature due to disorder, previously found in RSOS models, apply more generally to ASOS and continuous models. The agreement between the theoretical models and experimental data shows that, in this context, disorder should be the crucial ingredient of any model while other aspects may be kept very simple, an approach that can be useful for a wider class of problems. Our work has also implications for the existence of correlations in DNA sequences.Comment: Final published version. Title and discussion modified. 6 pages, 3 figure

    Dependence on temperature and GC content of bubble length distributions in DNA

    Get PDF
    We present numerical results on the temperature dependence of the distribution of bubble lengths in DNA segments of various guanine-cytosine (GC) concentrations. Base-pair openings are described by the Peyrard-Bishop-Dauxois model and the corresponding thermal equilibrium distributions of bubbles are obtained through Monte Carlo calculations for bubble sizes up to the order of a hundred base pairs. The dependence of the parameters of bubble length distribution on temperature and the GC content is investigated. We provide simple expressions which approximately describe these relations. The variation of the average bubble length is also presented. We find a temperature dependence of the exponent c that appears in the distribution of bubble lengths. If an analogous dependence exists in the loop entropy exponent of real DNA, it may be relevant to understand overstretching in force-extension experiments.Comment: 8 pages, 6 figures. Published on The Journal of Chemical Physic

    Distribution of bubble lengths in DNA

    No full text

    Electrochemical behavior of Sn-Zn alloys with different grain structures in chloride-containing solutions

    Get PDF
    In the present research the electrochemical behavior of the Sn-Zn alloys (Sn-1 wt.%Zn, Sn-4 wt.%Zn and 8.9 wt.%Zn) in 3% NaCl solution is analyzed using potentiodynamic cyclic polarization measurements and Electrochemical Impedance Spectroscopy (EIS) technique. Specimens were longitudinally solidified with simultaneous heat extraction in two opposite directions. Working electrodes were constructed using longitudinal and cross sections of the specimens with both types of structure: columnar and equiaxed. Results obtained from the polarization curves indicated that the two types of grain structures of Sn-Zn alloys (Sn-1 wt.%Zn, Sn-4 wt.%Zn and Sn-8.9 wt.%Zn) corresponding to longitudinal section present a pseudo passive zone. In the case of specimens from cross sections of the samples, the columnar and equiaxed zones of Sn-8.9 wt.%Zn are the only ones that do not have this pseudo passive region. In addition, the interdendritic zone of alloys is susceptible to corrosion by dealloying because this phase is zinc-rich. This type of corrosion also occurs in the zinc rich lamellar structure present in the eutectic. The percentage of zinc in the alloy increases with increasing susceptibility to pitting corrosion. The EIS values obtained revealed that the susceptibility to corrosion increases with increasing zinc content in alloys, for both the columnar and equiaxed zones. In addition, the columnar zones of Sn-4 wt.%Zn and Sn-8.9 wt.%Zn specimens are more resistant to corrosion than the equiaxed grain specimens. However, the equiaxed zone of Sn-1 wt.%Zn alloy is less susceptible to corrosion than the columnar zone. After adjustment by equivalent circuits it is revealed that the equiaxed zone of Sn-8.9 wt.%Zn alloy has a second porous layer composed of corrosion products on the electrode surface.Fil: Mendez, Claudia Marcela. Universidad Nacional de Misiones. Facultad de Ciencias Exactas, Químicas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; ArgentinaFil: Scheiber, Verónica L.. Provincia de Misiones. Comité de Desarrollo e Innovación Tecnológica. Centro de Desarrollo e Innovación Tecnológica; ArgentinaFil: Rozicki, Roberto S.. Universidad Nacional de Misiones. Facultad de Ciencias Exactas, Químicas y Naturales; ArgentinaFil: Kociubczyk, Alex Iván. Universidad Nacional de Misiones. Facultad de Ciencias Exactas, Químicas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; ArgentinaFil: Ares, Alicia Esther. Universidad Nacional de Misiones. Facultad de Ciencias Exactas, Químicas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; Argentin

    Theory of Bubble Nucleation and Cooperativity in DNA Melting

    Full text link
    The onset of intermediate states (denaturation bubbles) and their role during the melting transition of DNA are studied using the Peyrard-Bishop-Daxuois model by Monte Carlo simulations with no adjustable parameters. Comparison is made with previously published experimental results finding excellent agreement. Melting curves, critical DNA segment length for stability of bubbles and the possibility of a two states transition are studied.Comment: 4 figures. Accepted for publication in Physical Review Letter

    Super-roughening as a disorder-dominated flat phase

    Get PDF
    We study the phenomenon of super-roughening found on surfaces growing on disordered substrates. We consider a one-dimensional version of the problem for which the pure, ordered model exhibits a roughening phase transition. Extensive numerical simulations combined with analytical approximations indicate that super-roughening is a regime of asymptotically flat surfaces with non-trivial, rough short-scale features arising from the competition between surface tension and disorder. Based on this evidence and on previous simulations of the two-dimensional Random sine-Gordon model [Sanchez et al., Phys. Rev. E 62, 3219 (2000)], we argue that this scenario is general and explains equally well the hitherto poorly understood two-dimensional case.Comment: 7 pages, 4 figures. Accepted for publication in Europhysics Letter

    Hidden structure in the randomness of the prime number sequence?

    Full text link
    We report a rigorous theory to show the origin of the unexpected periodic behavior seen in the consecutive differences between prime numbers. We also check numerically our findings to ensure that they hold for finite sequences of primes, that would eventually appear in applications. Finally, our theory allows us to link with three different but important topics: the Hardy-Littlewood conjecture, the statistical mechanics of spin systems, and the celebrated Sierpinski fractal.Comment: 13 pages, 5 figures. New section establishing connection with the Hardy-Littlewood theory. Published in the journal where the solved problem was first describe

    SiGe quantum dots for fast hole spin Rabi oscillations

    Get PDF
    We report on hole g-factor measurements in three terminal SiGe self-assembled quantum dot devices with a top gate electrode positioned very close to the nanostructure. Measurements of both the perpendicular as well as the parallel g-factor reveal significant changes for a small modulation of the top gate voltage. From the observed modulations we estimate that, for realistic experimental conditions, hole spins can be electrically manipulated with Rabi frequencies in the order of 100MHz. This work emphasises the potential of hole-based nano-devices for efficient spin manipulation by means of the g-tensor modulation technique

    Second order equation of motion for electromagnetic radiation back-reaction

    Get PDF
    We take the viewpoint that the physically acceptable solutions of the Lorentz--Dirac equation for radiation back-reaction are actually determined by a second order equation of motion, the self-force being given as a function of spacetime location and velocity. We propose three different methods to obtain this self-force function. For two example systems, we determine the second order equation of motion exactly in the nonrelativistic regime via each of these three methods, the three methods leading to the same result. We reveal that, for both systems considered, back-reaction induces a damping proportional to velocity and, in addition, it decreases the effect of the external force.Comment: 13 page
    corecore